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We investigate the electrostatic equilibria of N discrete charges of size 1/N on a
two dimensional conductor (domain). We study the distribution of the charges
on symmetric domains including the ellipse, the hypotrochoid and various reg-
ular polygons, with an emphasis on understanding the distributions of the
charges, as the shape of the underlying conductor becomes singular. We find
that there are two regimes of behavior, a symmetric regime for smooth con-
ductors, and a symmetry broken regime for “singular” domains. For smooth
conductors, the locations of the charges can be determined, to within
O(
√

logN/N2) by an integral equation due to Pommerenke [Math. Ann., 179:
212–218, (1969)]. We present a derivation of a related (but different) integral
equation, which has the same solutions. We also solve the equation to obtain
(asymptotic) solutions which show universal behavior in the distribution of the
charges in conductors with somewhat smooth cusps. Conductors with sharp
cusps and singularities show qualitatively different behavior, where the sym-
metry of the problem is broken, and the distribution of the discrete charges
does not respect the symmetry of the underlying domain. We investigate the
symmetry breaking both theoretically, and numerically, and find good agree-
ment between our theory and the numerics. We also find that the universality
in the distribution of the charges near the cusps persists in the symmetry bro-
ken regime, although this distribution is very different from the one given by
the integral equation.
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1. INTRODUCTION

The placement of charges on a conductor is a classical problem in both
physics and mathematics. In physics the history of the problem goes back
to the work of J.J. Thomson.(35,7,6) The placement of charges on a line
was investigated by Stieltjes(33) in the late 19th century. Fekete(13) recog-
nized the connection between the placement of charges on a 2 dimensional
domain, and questions involving polynomial functions of a complex var-
iable. This problem was also investigated by Frostman,(14) for its connec-
tions to Potential theory. In general, the problem is to place N charges of
strength 1/N on a surface so that the energy is minimized. In this place-
ment the force component parallel to the surface for each charge vanishes.

This problem has quite a different nature depending upon the dimen-
sion of the system. In three dimensional space, one uses an inverse square
force law. The placement upon any surface, even one as simple as the sur-
face of a sphere is quite complex. The discrete charges form an approxi-
mation of a lattice with many defects.(11,7,6,8) The solution might properly
be described as being chaotic.

In contrast, in two dimensions, one finds smoother behavior. The
problem is one of placement of lines of charge on the curve which bounds
a two- dimensional conductor. Forces between the charges are given by an
inverse first power of the distance.

The analogous continuum problem has a very good general formu-
lation via the Riemann mapping theorem. To calculate the distribution
of continuum charges on the exterior of a simply connected region in
the plane, construct the unique function F(w) that takes the exterior of
the unit circle into the exterior of the region, and has the property that
F(w)→ w as w → ∞. Then the density of charges at the point z =
F(w)=F(eiθ ) on the surface of the conductor is given by

ρ(θ)=|wF ′(w)|−1 (1)

This result provides the basis for all subsequent work on discrete charges.
More recent work(22–24) has looked at the placement of discrete

charges in terms of the placement of points on the circle at

wj = e2πiθj (2)

The θj ’s are real. According to a set of important recent theorems,(23)

for sufficiently smooth curves C, we can determine the charge placement
for all large enough values of N in terms of a smooth periodic function,
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ψ(θ)2, by writing

θj ≈ θ0 + 2πj
N

+ 1
N

[
ψ

(
θ0 + 2πj

N

)
−ψ(θ0)

]
(3)

With appropriate choice of θ0, expression 3 gives the placement of charges
with error of order

√
log(N)/N2(29) for all extrema of the energy

EN({θ})=− 1
2N2

∑
j �=k

� ln[F(wj )−F(wk)] (4)

Here we represent the usual logarithmic potential for line-charges by tak-
ing the real part of the complex logarithm function.

1.1. New Empirical Results

We calculate the actual position of charges on two different kinds of
shapes: ellipses and hypotrochoids. These two kinds of shapes are defined
as the image of the unit circle under maps of the form

F(w)=w− c

wr
(5)

Here r= 1 for ellipses and r= 2 for hypotrochoids. The parameter c con-
trols how different these figures are from the circle.

Results of these mappings are shown in figures 1,2. These figures also
include the positions of the charges placed upon these conductors. As one
might expect from equation 1, the charge densities are highest in the high
curvature areas of the bounding curves. However, the figures also contain
some surprises. In both cases, there is a symmetry breaking in the more
pointed figures. In this breaking, the left-right symmetry is broken at each
pointy region, and the overall parity symmetry of the figure is lost. We
shall explore this symmetry-breaking in more detail below.

To understand these charge placements, look at the energies they gen-
erate. When the sizes of the figures are properly adjusted the continuum
correlation energy is zero. The next term in the energy is the self-energy:

ENs =− lnN
2N

(6)

2This functional is conventionally denoted by �. We however reserve � for the electrostatic
potential.
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Fig. 1. Placement of 16 charges on two different ellipses, c= 0.2 and c= 0.7 respectively.
Notice the breaking of the parity symmetry in part b. The ellipse degenerates to a line
when c=1.

This term is independent of charge placement. The remaining energy is a
correlation energy, and has a power-law behavior in N for large N :

ENc ∼N−s (7)

Here the exponent s is known to be two for smooth curves. In figure 3
we plot the correlation energy versus N for three different hypotrochoids.
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Fig. 2. Placement of 18 charges on three different hypotrochoids, corresponding to c=0.2,
c=0.45 and c=0.5 respectively. Notice the breaking of the parity symmetry in part b and c.
The hypotrochoid is smooth for 0� c<1/2 but gains three pointed cusps at c=1/2.

In the first case, we can clearly see that s=2. For the singular figure, cor-
responding to figure 2c, the log-log plot exhibits a slope of 1.5. In the
intermediate case, corresponding to the blunted points of figure 2b, there
is a crossover from s=1.5 for smaller N to s=2 for larger N .

1.2. Connection to Modern Work in Dynamical Systems Theory

Note the close connection between equation 3 and the expression giv-
ing the positions of points in long cycles and quasi-periodic orbits of
KAM(5) theory. KAM theory provides an expansion about continuum
motion, in which the positioning of points in a cycle closely follows that
of the corresponding continuum orbit. In this Coulomb system too, a near
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Fig. 3. Plot of correlation energy versus N . The three curves shown correspond to the
three hypotrochoids shown in figure 2.
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continuum result gives a charge density which is only a little different from
the one in the continuum case. As in KAM theory, equation 3 describes
a near-continuum result by giving a function, here ψ , which describes the
deviation from and permits a smooth passage to the continuum limit in
which N goes to infinity.

In KAM theory, the cycles closely follow a continuum orbit. So the
continuum theory predicts the curve on which the points will occur; but
it does not give the positioning of the points in the orbit. A more subtle
calculation is required to find that. Here the analogous fact is that the ini-
tial angle θ0 of equation 3 is not determined by any continuum theory. In
fact, one does not know a first principles method of finding θ0.

Dynamical systems theory is much concerned with bifurcations, i.e.,
situations in which a qualitative change in behavior occurs. In the Coulomb
problem there is a bifurcation from the single symmetric to multiple solu-
tions and symmetry breaking behavior. In dynamical systems theory when
a parameter is varied, bifurcations can occur for longer and longer orbits
producing an interesting kind of critical behavior.(17,20,21) Here the analo-
gous situation arises when the bounding curve develops cusps as the param-
eter c is varied, and close to this cusp formation, the Coulomb system
exhibits a symmetry breaking bifurcation. This behavior produces interest-
ing anomalies including the cross-over in the N -dependence of the energy.

1.3. Paper Outline

Section 2 of this paper deals with the equations for the placement of
charges on the circle and on the circle mapping onto "real space". The
uniform placement on the circle gives a correlation energy which goes
exponentially to zero for large-N .We derive an integral equation which
describes the “continuum” behavior of the deviation of the charges from
the uniform placement on the circle. This is related to, but different from,
the equation formulated by Pommerenke.(29) Our derivation gives a phys-
ical interpretation of the equation as being related to the distortions of
fields produced by the discrete charges’ self-energy effects.

Section 3 follows the analysis of the integral equation in Fourier
space. Here the first quantity of interest is the structure function sk, which
is the Fourier transform of the charge distribution. The equation is solved
in the large N -limit for both the ellipse (an old result (28)) and the hypot-
rochoid–a new result. The solution, involving an elliptic function, is for-
mally very similar in the two cases. We also compare the solutions we
obtain with numerical observations, and we find that the Integral equa-
tion is not applicable for “singular” shapes, and in the symmetry broken
regime.



1308 Kleine Berkenbusch et al.

In Sec. 4, we present new results for the singular limit of the Cou-
lomb problem. We investigate the energy and the charge placement in the
symmetry broken regime, i.e., for ellipses with c≈ 1, hypotrochoids with
c≈ 1

2 . We also study “singular” curves with cusps and corners, viz. the line
segment, the hypotrochoid with c= 1

2 and various regular polygons. We
present scaling arguments for the dependence of the energy on N in the
singular limit, and use this to obtain scaling laws for the symmetry-break-
ing transition. We also compare these results with numerical simulations.

2. REAL SPACE ANALYSIS

2.1. On the Circle

We describe our electrostatics problem by using complex variables.
Thus a charge of size 1/N placed at the point (xj , yj ) will generate the
complex potential at the point (x, y) via the formula

�(z)=− 1
N

ln(z− zj )

where ln is the complex logarithm and z is x + iy. If there are N such
charges

�(z)=− 1
N

N∑
j=1

ln(z− zj ) (8)

When the N charges are uniformly distributed on a circle of radius one,
then the potential is

�(z) = − 1
N

N∑
j=1

ln(z− e2πij/N )

= − 1
N

ln(zN −1) (9)

Note the elegance of the result of equation (9). In the limit of large
N , inside the unit circle zN is very small, and the potential is well approx-
imated by �= (−πi)/N . Outside, we find �=− ln z which is the contin-
uum result. To get the potential seen by the charge at z= 1, we have to
subtract away the charge potential it produces and use

�0(z)= 1
N

ln
z−1
zN −1

(10)
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Equation (10) describes the potential upon our charge as the potential
produced by the charges on the circle less the potential generated by our
charge itself. In the neighborhood of z=1, we can evaluate this potential
as

�0(z)=− lnN
N

− N −1
2N

(z−1)− (N −1)(N −5)
24N

(z−1)2 + . . . .
The total energy of this set of charges is obtained as one half this

potential (at z= 1) times the charge summed over all charges. The result
is

EN =− logN
2N

≡Es (11)

We previously described this term as a self-energy. More precisely the
energy of our charges is the energy generated by a continuous circle of
charge, namely zero, minus the energy needed to put together the “miss-
ing” portions of the circle. Those portions are the lines of charge counted
as not present in expressions like equation (10). These are lines of charge
of length 2π/N not generating potential in the gap around our charge
itself. The energy of one such gap is (logN)/2N2. Subtracting away N

such energies gives expression (11).

2.2. Uniform Spacing on the Circle

This polynomial method is elegant but it is difficult to generalize to
other curves beyond the circle. A method less elegant but more susceptible
to
generalization is to evaluate the potential via the contour integral:

�0(z)=−
∫
C

dy

2πiy
1

yN −1
log(z−y) (12)

Here the contour, C, encircles all the poles of 1/(yN − 1) except the pole
at y = 1 (See Figure 4). By summing the contributions from the various
poles we find the result of equation (9) once more.

An alternative mode of evaluation is to deform the contour to include
the poles at zero and one and the branch line which runs from z to infin-
ity. The result is then

�0(z)= log z+ log(z−1)
N

− 1
N

∫ ∞

zN

ds

s

1
s−1

(13)

which works out to the result (9) once more.
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Fig. 4. Contour for calculating the potential generated by N −1 charges on the circle.

The next step is to generalize the calculation to include the possibility
of a curve other than the unit circle. Let F(w) be the function which con-
formally maps the exterior of the unit circle into the exterior of a curve
C. We shall place our charges on the curve C, but give them the place-
ment which is appropriate for the mapping of charges uniformly spaced
on the unit circle. Now consider once more the effect of N−1 charges on
C. Instead of the integral (12), the potential on a given charge is set by
the more general object

�N(z, v)=−
∫
C

dw

2πiw
wN

wN −vN log(z−F(w)) (14)

Here v is on the unit circle and the contour, C, encircles the points

wj =ve2πij/N for j =1,2, . . . ,N −1. (15)

in the positive sense (See figure 5.) The real part of �N(z, v) is the poten-
tial at the space point z, produced by the specified set of charges. Note
that this potential does not take into account the redistribution of charges
required to produce an equilibrium distribution.

The calculation follows much the same lines as the previous one, but
the details of the calculation are a bit different because the integrand is
different. As we move the contour we get four different contributions to
the result (14) (See Figure 6). The first contribution comes from the encir-
cling of all the branch lines of the logarithm. The number of the branch
lines that connect the preimages of z to 0 depends on the map. The next
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Fig. 5. The contour for equation (14). The main difference from the previous figure is that
there are some branch lines within the unit circle. This figure is drawn with v=1.

contribution comes from encircling the pole at w=v. This gives a contri-
bution from the “missing” charge, which is

1
N

log[z−F(v)]

Next comes a contribution from circling the branch line which goes to the
point at infinity. Because that encirclement contribution has a logarithmic
divergence, we do not carry it out all the way to infinity, but instead cut
it off at some large but finite length L	1. Then we also need a contribu-
tion from a circle at infinity. All this is illustrated in figure 6. The branch

Fig. 6. The contour for equation (14) after deformation.
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line contribution is

∫ L

F−1(z)

dw

w

wN

wN −vN = 1
N

∫ LN

[F−1(z)]N

du

u

u

u−vN

= 1
N

log
LN −vN

[F−1(z)]N −vN

≈ logL− 1
N

log[[F−1(z)]N −vN ]

Finally, the large circle gives just

− logL

since for large w, F(w) is approximately w. When we add up all these
terms we see that

�N(z, v)= 1
N

log(z−F(v))− 1
N

∑
u∈F−1{z}

log(uN −vN) (16)

Equation (16) is a most interesting result. For z inside the curve C,
the potential is

− log(−v)+ 1
N

log[z−F(v)]
The first term is an imaginary constant describing how we placed the
branch line. The second is a contribution of the “missing” charge. For z
outside the the curve C the potential is

− log [F−1(z)]+ 1
N

log[z−F(v)]

The first term defines the potential in the limit in which N goes to infinity.
This is the familiar but deep statement that the inverse of the mapping is
proportional to the exponential of the complex potential. The second term
is once more the missing charge.

Finally, we can look at the case in which the potential is evaluated at
the unrelaxed position of the N th charge, i.e. z=F(v). We then have:

�N(F(v), v)= lim
z→F(v)

�N(z, v)= lim
z→F(v)

1
N

log

[
z−F(v)∏

u∈F−1{z}(uN −vN)

]
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Clearly, it is v∈F−1{F(v)}, so all but one part of the limit can be trivially
evaluated. The one piece in which u= v can be done by l’Hospital’s rule.
It then follows that:

�N(F(v), v)= 1
N

log
[
F ′(v)
NvN−1

]
− 1
N

∑
u∈F−1{F(v)},u�=v

log(uN −vN) (17)

Now we can write down the total energy of the system. Since

EN = 1
2N

N∑
j=1

�N(F(vj ), vj )

we have

EN =− logN
N

+ 1
2N2

∑
j

log

[
F ′(vj )
vN−1
j

]

− 1
2N2

N∑
j=1

∑
u∈F−1{F(v)},u �=v

log(uN −vN)

In general, it is difficult to find all such u′s and perform the sum.
However, in the case of the ellipse given by F(z)= z+ c

z
, this expression

nicely simplifies.

2.3. Ellipse Energy – Uniform Spacing

To begin, let us evaluate the first sum in the above expression for the
uniform spacing of charges, i.e. put vj = ζj , where ζj ’s are the Nth roots
of unity.

We have,

1
2N2

N∑
j=1

log(ζjF ′(ζj ))= 1
2N2

log
N∏
j=1

(
ζj − c

ζj

)

It follows that

N∏
j=1

(
ζj − c

ζj

)
= (−1)N

N∏
j=1

(
1− c

ζ 2
j

)
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We notice that since the roots of unity form the cyclic group of order
N , and taking N to be odd, 2 always has a multiplicative inverse in ZN ,
and the group is invariant under squaring the roots of unity.

Therefore, for odd N ,

(−1)N
N∏
j=1

(
1− c

ζ 2
j

)
= −

N∏
j=1

(
1− c

ζj

)
=−

N∏
j=1

(
1− cζN−j

)

= −cN
N∏
j=1

(
1
c

− ζN−j
)

=−(1− cN)

It follows

1
2N2

N∑
j=1

log(ζjF ′(ζj ))= 1
2N2

log(1− cN)

If N is even, then 2∗ZN ∼=ZN/2 so that

(−1)N
N∏
j=1

(
1− c

ζ 2
j

)
=

N∏
j=2,4,6...

(
1− c

ζj

)2

= (1− cN/2)2

and therefore

1
2N2

N∑
j=1

log(ζjF ′(ζj ))= 1
N2

log(1− cN/2)

Please note that the evaluation of this sum can be readily generalized
to the family of curves given by F(z)= z+ c

z(p−1) where p is prime. Then

zF ′(z)= z− (p−1)c
z(p−1) , and of course, as before, if N �= 0 mod p, raising the

Nth roots of unity to the pth power simply reshuffles them so that

1
2N2

N∑
j=1

log(ζjF ′(ζj ))= 1
2N2

log(1− ((p−1)c)N)

In the case that N =0 mod p,

N∏
j=1

(
1− (p−1)c

ζ
p
j

)
=

N∏
j=p,2p,3p...

(
1− (p−1)c

ζj

)p
= (1− ((p−1)c)

N
p )p
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and we conclude that

1
2N2

N∑
j=1

log(ζjF ′(ζj ))= p

2N2
log(1− ((p−1)c)

N
p ).

Now we just need to evaluate the second sum for the ellipse and
we will have the exact energy expression for a uniform arrangement of
charges. To this end we need to obtain the u′s which satisfy the equation
F(ζj )=F(u) or u2 −uF(ζj )+c=0. It is clear that u=ζj satisfies the equa-
tion, and from this it follows that, since the product of the two roots of
the above quadratic is c, the other u must be c

ζj
.

We now have:

1
2N2

N∑
j=1

∑
u∈F−1{F(v)},u �=v

log(uN −vN)= 1
2N

log(1− cN)

since ζNj = 1.
Finally, for odd N,

EN =− logN
N

− 1
2N

log(1− cN)+ 1
2N2

log(1− cN)

while for even N, we have:

EN =− logN
N

− 1
2N

log(1− cN)+ 1
N2

log(1− c N2 )

The remaining material in this chapter should be considered to be
more heuristic in content.

2.4. Heuristic Discussion of Energies

We have just completed a careful analysis of the self-energy in the
case in which the charges are uniformly distributed on the unit circle. Now
we extend this discussion to include the effects of a non-constant charge
density on the circle. In fact, if we define the charge density to be the
smooth function of j defined so that

θJ − θK =
∫ J

K

dj

Nρj
(18)
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If ρj is independent of j we know that equation (11) gives an essentially
exact answer for the large-N case.

Our result for contributions of the self-energy to the potential for a
single particle is given by equation (17), which can be written in terms of
the spacing between particles on the curve C which is given by a spacing
factor on the circle times the conversion factor from circle it curve 1/F ′.
Thus the spacing is

δ= |vF ′(v)|
2Nπρ

(19)

If we take our original expression for the self-energy contribution to the
potential, and then say that this contribution to the real potential depends
only on the actual spacing we find a potential contribution

φs(j)= 1
N

log
[ |F ′(vj )|

2Nπρj

]
(20)

Just as before, we calculate a contribution to the total energy by taking
half the potential multiplied by the charge density and adding. We find

Es = 1
2N

N∑
j=1

log
[ |F ′(vj )|

2Nπρj

]
(21)

This energy is the continuum value (zero) plus a contribution from
the replacement of the line of charge distributions immediately surround-
ing a given charge (which is included in the continuum energy), by the self
energy of the point charge which replaces it, and is not included in the
energetic calculation. This is the charge in question 1/N times the separa-
tion of the charges on the line, log 1/N . One can also write this energy as
an integral over the circle of the form

Es = 1
2N

∫ 2π

0
dθ ρ(θ) log

[ |F ′(v)|
2Nπρ(θ)

]
(22)

Here v is eiθ and ρ(θj ) is the same as ρj . This form of the energy is con-
venient for variational calculations.

Note the factor of one half in front of equation (22). It will be impor-
tant in what follows.
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The same discussion can be easily extended to the calculation of the
interaction energy. Because of the logarithmic potential the result is

Ecorr = 1
2

∫ 2π

0
dθ ρ(θ)

∫ 2π

0
dµ ρ(µ) � log[F(eiθ )−F(eiµ)] (23)

2.5. Variational Calculation

To construct a variational principle, we take the two energies of equa-
tions (22) and (23) add to them a Lagrange multiplier term of the form

−
∫ 2π

0
dθ ρ(θ)φ0

designed to ensure that the total change is constrained to be unity. One
then sets the resulting variation with respect to ρ to zero and finds

φ0 =
∫ 2π

0
dµ ρ(µ) � log[F(eiθ )−F(eiµ)]+ 1

2N
log

[ |F ′(eiθ )|
2Nπeρ(θ)

]
(24)

The e in the last term appears as a result of varying the density inside the
logarithm. Note once more the factor 1/2 in front of the last term. This
equation is as far as we can tell, new.

Equation (24) looks like the statement that the electrical potential on
a conductor is constant. However, that is not quite the right interpreta-
tion. To the requisite order (1/N ) the right hand side of equation (24) is
not the electrical potential. The electric potential is the somewhat similar
expression in which the symbols e and 1/2 just mentioned are replaced by
unity, i.e.,

φ(θ)=
∫ 2π

0
dµ ρ(µ) � log[F(eiθ )−F(eiµ)]+ 1

N
log

[ |F ′(eiθ )|
2Nπρ(θ)

]

This actual potential, in contrast to φ0, varies in space.
In equation (24) the potential φ0 can be evaluated by integrating the

equation over all values of θ . The very same arguments which we used in
section 2.2 to perform the integration over charges uniformly distributed
on the circle can be used to simplify the expression for φ0. We find

2πφ0 =
∫ 2π

0
dθ

1
2N

log
[ |F ′(eiθ )|

2Nπeρ(θ)

]
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We are looking for the lowest order terms which are of order 1/N . Hence
we can set ρ(θ) to its lowest order value 1/(2π). We can also evaluate the
integral over logF ′ by taking the contour to infinity. In the end we find

2πφ0 =
∫ 2π

0
dθ

1
2N

log
[

1
Ne

]

so that, to order 1/N equation (24) becomes

0=
∫ 2π

0
dµ ρ(µ) � log[F(eiθ )−F(eiµ)]+ 1

2N
log |F ′(eiθ )| (25)

which is our desired final result.
This equation is related to the integral equation for the charge distri-

bution in ref. 27. While our equation is a statement of the constancy of
an appropriate potential on the surface of the conductor, the equation in
Ref. (29) is a statement that the tangential component of the electric field
is zero at each charge location, in an equilibrium configuration.

3. FOURIER SPACE ANALYSIS

We will analyze the integral equation (25) using Fourier analysis tech-
niques. We define the Fourier coefficients of the continuum density ρ by

ρk =
∫ 2π

0
ρ(µ)eiµkdµ

Following Pommerenke,(28) we also define

sk =
N∑
i=1

wki .

where wi is the location of the ith charge in the minimum energy configu-
ration. The sk encode information about the locations of the charges. For
k�N , the sk reflect the smooth, large scale behavior of the distribution of
the charges. Thus, they should correspond to the ρk by

sk ≈Nρk =N
∫ 2π

0
ρ(µ)eikµdµ.
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For larger k, in particular for k ∼ N , the discreteness of the charges
becomes important, and sk will in general be very different from ρk.

We now rewrite the integral equation (25) in terms of these defini-
tions. From (25) we obtain

∫ 2π

0
ρ(µ)�

[
log[eiθ − eiµ]+ log

[
F(eiθ )−F(eiµ)

eiθ − eiµ
]]
dµ

=−� 1
2N

log[F ′(eiθ )]

Substituting ρ(µ)= 1
2π

∑
k ρke

−ikµ, we obtain

ρk

k
+
∑
l

akl ρ̄l = ck

2N
,

where, following Pommerenke,(28) we have defined the matrix akl and the
vector cj by

log
(
F(w)−F(ξ)

w− ξ
)

=−
∞∑
k=1

∞∑
l=1

aklw
−kξ−l ,

and cj =−∑j−1
k=1 ak,j−k, so that

logF ′(w)=−
∞∑
k=1

ckw
−k.

Solving this system of linear equations will yield the continuum density ρ.
Note that the above system is only meaningful for k=1,2,3, . . . . We know
that the total charge is 1, and this fixes ρ0 =1. We can also obtain infor-
mation on the locations of the charges form the correspondence between
ρk and sk. For large N , using the correspondence sk ≈Nρk, we get

sk

k
+
∑
l

akl s̄l = ck

2
, (26)

which is the same as the equation in Lemma 2 of ref. 28. We will hence-
forth refer to this as the Pommerenke equation. Note that our analysis
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yields the (unexpected) conclusion that the equations determining the sk
have no dependence on N , the total number of charges.

We can calculate akl and ck for the ellipse and the hypotrochoid using
the explicit forms of F . In order to keep the formulae simple, and avoid
the appearance of complex roots of unity, we will use the forms

F(ξ)= ξ + c

ξ r
,

Therefore, the c in this section is the same as the c in the previous section,
if we set ξ =eiπ/2w for the ellipse, and ξ =eiπw for the hypotrochoid. We
thus need to shift the results with our choice of mapping function by π/2
and π respectively to compare with the mapping functions in Sec. 2.

A calculation for the ellipse yields

akl = ck

k
δkl (27)

and

ck =
{

0 k odd
2
k
ck/2 k even

. (28)

A similar calculation for the hypotrochoid shows that the energy can
be put in a similar form with

akl =



0 k+ l �=0 mod 3
0 k<p or l <p,p= (k+ l)/3

cp

p
p!

(k−p)!(l−p)! otherwise, p= (k+ l)/3
(29)

and

ck =
{

0 k �=0 mod 3
3
k
(2c)k/3 otherwise.

(30)

3.1. Solving the Pommerenke Equation

For the ellipse, the matrix akl is diagonal. Consequently, Eq. (26) is
easily solved to yield:

sk =
{

0 k odd,
ck/2

1+ck = rk0
1+r2k

0
k even. (31)
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which is the solution presented in.(28) Note that for this solution, sk is real
for all k. This is equivalent to the statement that there is no symmetry
breaking. Thus this approach cannot capture the symmetry breaking for
the ellipse that we see in the numerics.

This result is compared to numerical calculations in Fig. 7, which
is also done with the map F(w)= w + c/w. The circles are the results
obtained for N = 40, while the stars correspond to N = 100. As expected,
the agreement is good for small enough values of c, for which the sym-
metry is unbroken. Moreover the agreement is better for N=100 than for
N = 40. This is in agreement with the expectation that deviation of the
solution (31) from the true sk is O(k2/N).(28)

We will now consider the hypotrochoid. We first enumerate the con-
sequences of the three-fold symmetry as well as the reflection symmetry of
the hypotrochoid. We get,

1. sk =0 for k �=0 mod 3 is a reflection of the symmetry of the
underlying hypotrochoid under rotations by 2π/3. This symmetry is

Fig. 7. sk as a function of k for the ellipse, for c=0.2, 0.6, 0.8 and 1 respectively; the cir-
cles are the numerics obtained with N = 40, the stars with N = 100, while the dashed line is
expression 31. As expected the agreement is good for small values of c, when the symmetry
is preserved. The deviations are therefore stronger for N =40 than for N =100.
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preserved in our numerically obtained solutions if the number of charges
N is a multiple of 3, and is broken otherwise.

2. sk is real as a consequence of the symmetry of the hypot-
rochoid under reflections about the real axis. This symmetry is broken
in our numerical solutions for any N , provided that c is sufficiently
close to 1/2.

If there is a unique minimizing configuration for the electrostatic energy
of the hypotrochoid, the symmetries of the problem imply that sk = 0 if
k �= 0 mod 3 and sk is real for all k. These features are also reflected in
the (approximate) sk obtained by solving the Pommerenke equation. Since
the Pommerenke equation is independent of N , we cannot investigate the
N dependent features, like symmetry breaking for the hypotrochoid, using
this approach.

We will now solve the Pommerenke equation for the hypotrochoid. If
c<1/2, ck and the akl decay exponentially as k and l get large. Therefore,
it is reasonable to try the series solution

sk = kck

2
−
∑
l

(kakl)
lc̄l

2
+
∑
j

∑
l

(kakl)(lalj )
j c̄j

2
+ . . . .

This series converges (not just for the hypotrochoid, but for any admissible
akl), as proved by Pommerenke.(28)

Let s(i)k denote the i-th term in the series, so that

s
(1)
k = kck

2
s
(i+1)
k = −

∑
l

kakl s̄
(i)
l , i=2,3, . . .

Eqs. (29) and (30) together give

s
(1)
k =0, k �=0 mod 3

s
(1)
3p = 3

2
(2c)p= 3

2
r

3p
0

s
(i+1)
k =−

k∑
p=
[
k+1

2

]
(
kcp

p

)
p!

(k−p)!(2p−k)! s̄
(i)

3p−k, i=1,2,3, . . . (32)

Since 3p − k �= 0 mod 3 unless k = 0 mod 3, it follows that s
(i)
k = 0 if

k �=0 mod 3 for all i. Setting k=3m,p=m+n and replacing the sum over
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p by a sum over n=p−m, we get

s
(i+1)
3m = −

2m∑
n=
[
m+1

2

]
(

3m
m+n

)
(m+n)!

(2m−n)!(2n−m)!

(
r3

0

2

)m+n
s̄
(i)

3n

i=1,2,3, . . .

= −3

(
r3

0

2

)m 2m∑
n=
[
m+1

2

]
(

m

n+m
)(

m+n
2m−n

)(
r3

0

2

)n
s̄
(i)

3n .

We can evaluate these sums using the saddle point method. Using
Lemma 1 in Appendix A, and s

(1)
3m = 3

2 r
3m
0 , we obtain the asymptotic

expressions

s
(i)

3m∼ (−1)i
3βmi

2
, i=1,2,3, . . .

where

β1 = r3
0

βi+1 =

[
(r3

0βi +
√

8r3
0βi + r6

0β
2
i )

]3

64βi
, i=1,2,3, . . .

and all corrections to this asymptotic result are O(1/m).
At the critical parameter value c= 1

2 , r0 =1. In this case, β1 =1 and

βi+1 =

[
(βi +

√
8βi +β2

i )

]3

64βi

implies that βi = 1 for all i. Thus, the series solution breaks down in the
critical case, as the solutions s(i)k do not decay with i.

For parameter values close to the critical value, c= 1
2e

−ε , we have

r3
0 =2c= e−ε ≈1− ε

If ε is sufficiently small, then we have βi is close to one for the first few
values of i. We can study the dependence of βi on the parameter ε by set-
ting βi=e−ti ε+O(ε2)=1− tiε+O(ε2). Linearizing the relation between βi+1
and βi close to the fixed point β=1, r0 =1, we get

βi+1 =1− (ti +2)ε+O(ε2)+ . . .
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This gives

ti+1 = ti +2.

Combining this with t1 =1, we get

ti = (2i−1)

It is clear that this analysis is valid long as tiε�1, i.e., for i�ε−1. Beyond
this value, we can show that the βi decay rapidly. Using this expression for
the βi , we can re-sum the series solution for sk to obtain

s3m= 3
2

r3m
0

1+ r6m
0

+O
(

1
m

)
.

The complete solution is

sk =
{

0 k �=0 mod 3,
3
2

(2c)k/3

1+(2c)2k/3 (1+O(k−1))≈ 3
2

rk0
1+r2k

0
k=0 mod 3. (33)

Note the similarity with the solution in Eq. (31). The agreement of result
(33) with numerics is tested in Fig. 8. We use the map F(w)=w− c/w2,
but the quantities plotted are (−1)ksk, which is the same as using the map
F(w)=w+ c/w2. For small c and for k�N , the agreement is very good.
However, the agreement is rather poor if c∼1/2, indicating that the inte-
gral equation is no longer valid as we approach the singular limit c→1/2.

3.2. The Minimum Energy Configuration of the Charges

Our goal is to find the locations of the N charges on the ellipse and
hypotrochoid that minimize the electrostatic energy EN . The results from
the previous section tell us that the locations wi on the unit circle that give
the appropriate locations on the ellipse and hypotrochoid by zi = F(wi)

are such that

n∑
i=1

wki ≈




rk0
1+r2k

0
k even, on ellipse.

3
2

rk0
1+r2k

0
+O

(
1
k

)
k=0 mod 3, on hypotrochoid.

0 otherwise

(34)
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Fig. 8. sk as a function of k for the hypotrochoid, for c=0.1, 0.3, 0.4 and 0.5 respectively.
As expected the agreement is good for small values of c, when the symmetry is preserved.

for 1� k � N . The problem of finding the locations wi reduces to the
problem of solving the above set of equations.

As Pommerenke shows in ref. 28, the locations of the charges are
given in terms of the solution sk to the Pommerenke equation by

θj ≈ θ0 + 2πj
N

+ 1
N

[
ψ

(
θ0 + 2πj

N

)
−ψ(θ0)

]
(35)

where

ψ(θ)= i
∞∑
k=1

[
sk

k
e−ikθ − s̄k

k
eikθ

]

and θ0 is an initial angle that is not determined by this analysis.
For the ellipse and the hypotrochoid, we get the series

ψ(θ)=−
∞∑
k=1

1
k

qk

1+q2k
sin(mkθ),
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where m=2,3 for the ellipse and hypotrochoid respectively, and q= rm0 .

This series can be summed using the formula

am(u)= πu

2K
+2

∞∑
n=1

1
n

qn

1+q2n
sin

nπu

K
.

(See p. 277, Ryshik and Gradstein(16)) to yield

ψ(θ)= mθ

4
− 1

2
am

(
mKθ

π

)
.

K=K(k) is the complete Jacobi elliptic function of the first kind(39), and
the modulus k is determined by requiring that q be the nome(1),

q= exp
[
−πK

′(k)
K(k)

]
,

where K ′(k) is the complementary complete elliptic function of the first
kind, K ′(k)=K(

√
1−k2).

We are particularly interested in situations close to the critical value
of c. In this case, q = e−ε ≈ 1 − ε is close to 1. From this, we infer that
K ′/K≈0, i.e k is close to 1. We will now work out the asymptotics close
to k=1, q=1.

If k=1− δ, k2 ≈1−2δ and k′ =
√

1−k2 ∼√
2δ, and we have

K(k) =
∫ π/2

0

dx√
1−k2 sin2 x

=
∫ π/2

0

dx√
2δ+ cos2(x)

+ ξ(δ)

= − 1√
2

log(δ)+ ξ ′(δ)

where we have extracted the dominant singularity of the integral in the
second line, and ξ, ξ ′ are functions that remain bounded as δ→0. We also
have

K ′ ∼
∫ π/2

0

dx√
1−2δ sin2 x

= π

2
+O(δ).
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Combining this with the previous result, and the definition of the nome q,
we see that

q≈ exp

[
π2

√
2 log(δ)

]
.

Rearranging this gives the result

π2
√

2
− log(q) log(δ)→0 as δ→0.

Using log(q)= −ε, we see that δ∼ exp[−π2/(
√

2ε)], so that K ∼ − log δ/√
2∼π2/(2ε).

Fig. 9 is a comparison between the results of this calculation, and the
numerically observed displacements of the charges from the positions that
would correspond to a uniform distribution on the circle. The normalized
deviation function

ψ(θ)= mθ

4
− 1

2
am

(
mKθ

π

)
. (36)

corresponds to the following two changes relative to the uniform distribu-
tion on the unit circle –

1. The “charge” density in the smooth regions is increased by an
amount δρ/ρ=m/(4N).

2. The charge moves away from the vicinity of the cusps, and this
depletion region has a width π/(mK)∼ 2ε/(mπ) around the the angles
corresponding to the cusps.

Note that Figs. 9 (b), (c) and (d) are obtained with the mapping
F(w)=w− c/w2 and the solid lines are therefore given by the “shifted”
function ψ(θ +π).

4. THE SINGULAR LIMIT

In this section, we investigate various aspects of the Coulomb prob-
lem on domains that are either singular, i.e., have cusps or corners, or are
close to being singular. We begin by first describing some of the numerical
observations, which motivate the theoretical analysis that follows.
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Fig. 9. A comparison between the theoretical prediction and the actual locations of the
charges in the minimum energy configuration. The normalized deviation from the nominal
position θj = 2πj/N is plotted. (a) shows the deviations for an ellipse with c= 0.2. (b), (c)
and (d) depict the charge placement on a hypotrochoid with c=0.2,0.3 and 0.4 respectively.
The solid lines are the theoretical prediction.

4.1. Ellipse, Hypotrochoid and Related Curves

4.1.1. Symmetry Breaking

As previously mentioned, an interesting feature of the charge place-
ment on the ellipse and on the hypotrochoïd is that the minimum energy
configurations break the symmetry of the problem in certain ranges of c
and N . For a given number of charges N , if the value of the parameter c
is larger than a given threshold c∗ which depends on N , the mirror sym-
metry is broken around each pointy region. The larger N , the closer the
threshold is to the critical value, i.e, c∗(N)→1 for the ellipse and c∗(N)→
1
2 for the hypotrochoid as N→∞.

This transition can be described by a phase diagram where c∗ is plot-
ted versus N : the case of the ellipse is presented in Fig. 10 and the case
of the hypotrochoid in Fig. 11.
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Fig. 10. Phase diagram for the ellipse.

Fig. 11. Phase diagram for the hypotrochoid.



1330 Kleine Berkenbusch et al.

On both phase diagrams, two different cases should be distinguished,
depending on the number of charges N . Let us first consider the case of
the ellipse. If N is even, in the unbroken symmetry phase, the charge con-
figuration will be symmetric versus both the vertical and the horizontal
axis. Both symmetries break when c>c∗ (see Figure 1). On the contrary,
for odd N , there is no symmetry across the long axis, while there is always
symmetry across the short axis (see Figure 12). In this case, there is no
transition of any sort. The value c∗ at which the symmetry breaks for even
N forms a curve (see Figure 10).

Similarly, in the case of the hypotrochoid, the case N = 0 mod 3 has
to be distinguished from the case N �=0 mod 3. In the first case, a symmet-
ric charge configuration respects the three mirror symmetries, one at each
pointy region (see Figure 2). In the case N �=0 mod 3, only 2 out of the 3
branches of the hypotrochoid are identical, with one charge more or less
than the third branch. Therefore, only one mirror symmetry is respected
in this case (see Figure 13). The boundary between the broken and the
unbroken symmetry phases is different for N=0 mod 3 and for N �=0 mod
3 (see Figure 11).

4.1.2. Energy Dependence on N

• Line segment: As pointed out previously, a useful quantity to char-
acterize the placement of charges on a given curve is the energy as a func-
tion of the number of charges. The case of the line segment �2 = [−2,2]
has been treated analytically in literature(27). The energy dependence on N
is given by

EN� =− lnN
2N

− ln 2
2N

− lnN
8N2

− A

2N2
,

where A is a constant. The first term is the self-energy. The first correc-
tion, or correlation energy, goes as N−s with s=1 in this case.
Other curves presenting this kind of N -dependence for the correlation
energy are the star shape curves defined by the conformal mapping F(w)=
z(1+cw−m)2/m(27), with c=1, where w=eiθ is on the unit circle and m is
the number of star branches. Figure 14 shows the case m=3. The depen-
dence of the correlation energy on N is shown in Fig. 15. addition Notice
that the charges are grouped near the points and that the density is lower
at the center.

• Ellipse: The line segment �2 is the singular limit, c = 1, of the
ellipse defined by the conformal map F(w) = w − c

w
. For a smooth

curve, c < 1, the correlation energy goes as N−s with s = 2 (see Fig. 16).
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Fig. 12. Placement of 15 charges on two different ellipses, c= 0.1 and c= 0.7 respectively.
Notice the breaking of the parity symmetry in part b.
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Fig. 13. Placement of 19 charges on two different hypotrochoids, c = 0.3 and c = 0.4
respectively. Notice the breaking of the parity symmetry in part b.

See the work of Pommerenke(28) where it is shown that s = 2 for any
smooth curve. In the case c close to but smaller than 1, we observe a
crossover as a function of the number of charges N : for smaller val-
ues of N , s = 1, while for larger values of N , s = 2, as shown in
Fig. 16.
The same N dependences are observed for the star shape curves for
0 < c < 1 (see Fig. 17). The different situations are depicted in
Fig. 18.

• Hypotrochoid: In its singular limit, c= 0.5, the hypotrochoid has
a correlation energy of the form N−s with s=1.5 according to the theory
described below. The data supports this result (see Fig. 3), whereas s =
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Fig. 14. Placement of 15 charges on a star shape curve with 3 branches for c=1.

Fig. 15. Dependence of the correlation energy on N for the star shape curve with 3
branches. The slope shown for the data is consistent with the value −1.0.

2 for smooth cases c < 0.5. As for the previous curves, a crossover is
observed from s=1.5 for smaller N to s=2 for larger N when c is close
to but smaller than 0.5 (see Fig. 3).

4.2. Regular Polygons

4.2.1. Schwarz-Christoffel Map

Another kind of domains we have been interested in are regular
polygons. The conformal map applying the interior of the unit circle
into the interior of a given polygon is known as the Schwarz-Christoffel
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Fig. 16. Dependence of the correlation energy on N for the ellipse, with c=0.975.

Fig. 17. Placement of 30 charges on a star shape curve with 3 branches, with c=0.5.

transformation(10) given by

F(w)=F(w0)+ c
∫ w

w0

n∏
j=1

(1− ζ/wj )αj−1dζ (37)

where wj are the pre-images of the vertices on the unit circle, αjπ are the
interior angles at the vertices and w0 and c are complex constants. A vari-
ation of Eq. 37 is the map applying the interior of the unit circle onto the
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Fig. 18. Dependence of the correlation energy on N for the star shape curve with 3
branches, for c = 0.5 and c = 0.95. The slopes of the line is consistent with the theoretical
values of −1.0 and −2.0.

exterior of a polygon, given by(10)

F(w)=F(w0)+ c
∫ w

w0

ζ−2
n∏
j=1

(1− ζ/wj )αj−1dζ. (38)

Finally, the map we are interested in which takes the exterior of the unit
circle into the exterior of the polygon is obtained by replacing w by 1/w
in Eq. 38.

In order to compute these maps, we have used the FORTRAN pack-
age SCPACK developed by L. N. Trefethen,(37) as well as the MATLAB
SC Toolbox developed by T. A. Driscoll.(10)

Let us remark that in order to fullfil the condition F(w)→ w as
w→∞, we need to choose the size of our regular polygons properly.
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4.2.2. Symmetry Breaking

As for the other curves considered, we observe a symmetry breaking of
the placement of charges on regular polygons. However, the process is
slightly different from the one observed for the hypotrochoid or the ellipse.
Indeed, for both these curves, in the singular limit, the symmetry is broken
for any finite value of N . Regular polygons do not present cusps, but cor-
ners. Depending on the value of the interior angles, the symmetry breaks
only for N larger than a threshold value N∗. For small enough values of
N , the charges remain far enough from the corners to be unaffected by the
charges sitting on the other sides of the polygon. When N increases, the
charges closest to the corner slightly shift to avoid being just in front of
the charges on the neighboring side. This effect is much more pronounced
on curves presenting cusps, because the distance between charges placed
on two neighboring branches decreases much faster as one approaches the
cusp. Therefore, the symmetry breaks for any finite N .

Figure 19 shows the placement of 6 charges on an equilateral trian-
gle and of 8 charges on a square. Due to the small value of the interior
angles in the case of the triangle, the symmetry is broken, while it is pre-
served for the square.

4.2.3. Minimum Energy Configuration

In order to characterize the minimum energy configuration, we have
computed the deviation function ψ(θ) for the regular hexagon, for differ-
ent values of N . The results are presented in Fig. 20. The charges sitting
at the corners remain unshifted, while the ones sitting on one side of the
hexagon shift toward the closest corner. If the number of charges on one

Fig. 19. Placement of 6 charges on an equilateral triangle and of 8 charges on a square; the
symmetry is broken in the first case and preserved in the second.
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Fig. 20. Deviation function ψ for the regular hexagon.

side is odd (like for N=30, N=36, N=48 and N=72), the central charge
does not shift.

For regular polygons, the correlation energy depends on N as N−s
with s = 2 according to the theory described below. Figures 21 and 22
show this dependence for a regular hexagon and a regular octagon.

4.3. Scaling Arguments for the Energy Dependence

The different dependences of the energy on the number of charges N
can be easily understood.

The energy itself is of order unity for a two-dimensional conductor
of arbitrary size. There are N2 interactions, each of strength 1/N2. The
size is picked so that this leading order term in the correlation energy is
zero for when the charges are in their unshifted position. The shift in posi-
tion for each particle is of order 1/N and all the particles and interactions

Fig. 21. Dependence of the correlation energy on N for the regular hexagon.
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Fig. 22. Dependence of the correlation energy on N for the regular octagon.

participate roughly equally in the shift. Since the energy obeys a varia-
tional principle, the energy varies as the square of the shift, or as 1/N2.

To find the shift in the singular case, consider first a simplified model
in which charges appear in two concentric closely spaced circles. To make
all the important distances comparable take the spacing between the cir-
cles to be the same as the spacing between the charges in each circle, i.e.
2π/N . Compare two cases, one with the charges lined up (see Fig. 23);
the other with the inner circle rotated so that no two charges are very
close to one another (see Fig. 24). In the second case, the distance between
the closest charges has increased roughly by a factor of two. These clos-
est interactions, each of order 1/N2 have changed by an additive term

Fig. 23. Two concentric circles, with the charges lined up.
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Fig. 24. Two concentric circles, shifted.

of order (1/N2) ln 2. Thus the entire change in correlation energy is of
order 1/N .

The very same argument applies to the hypotrochoid, except in that
it applies to only some of the charges. Look at the small distance s from
the point of the hypotrochoid. There are, once gain, two almost parallel
lines. At a distance s we have a number of charges, J , given by (J/N)2 ∼ s
and a separation between the two lines given by δ∼ (j/N)3. The separa-
tion between two changes on a single branch is the J derivative of (J/N)2

or ∼ J/N2. The number of charges sensitive to the distortion effects are
the ones with δ less than or of the order of this separation. Hence we have

(J/N)3 ∼ (J/N)(1/N)

or a number of particle J ∼N1/2 whose interaction with the nearest neigh-
boring charges can be changed by an amount of order unity. These par-
ticles each have an interaction of order 1/N2, so that the total change is
1/N3/2, as observed numerically.

For the very skinny ellipse, or for the line segment, all the
particles participate, as happens with the concentric circles, so that the
change is of order 1/N .

For a polygon, only the very few particles nearest to the corner par-
ticipate. Hence the singular change in the energy is of order 1/N2.

The crossover observed for values of c close to but smaller than c∗
can be understood as follows. For a sufficiently small number of charges,
the charges behave as if the curve were singular: the symmetry is broken
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Fig. 25. Charge placement for the hypotrochoid with c=0.45, for 24 and 240 charges.

and the above arguments apply. But when N increases, the smoothness
of the curve prevails, the symmetry is restored and the correlation energy
goes as N−s with s=2. This is illustrated in Fig. 25, where the placement
of charges near a cusp is shown for the hypotrochoid with c= 0.45, for
N =24 and N =240.

4.4. Symmetry Breaking

We can also estimate the energy of the symmetric placement of the
charges (See Appendix B). By considering a test (possibly non-optimal)
uniform symmetric configuration wj = exp(2πij/N + iθ0), we see that, with
appropriate choices of θ0, the minimum energy symmetric configuration
for an ellipse has an energy

En�− logN
2N

−
{

1
2

[
N−1 −N−2

]
log(1− e−Nε) N odd,

N−2 log(1− e−Nε/2)+N−1 log(1− e−Nε) N even,
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For the hypotrochoid, we have

En�− logN
2N

−
{
CN−2e−Nε N �=0 mod 3,
C′N−2e−Nε/3 +C′′N−2e−Nε N =0 mod 3,

where we expect that, for an appropriate θ0, the constants C,C′,C′′ are all
positive (See Appendix 5). For N	1 and ε >0,

− log(1− e−Nε/2)	− log(1− e−Nε), e−Nε/3 	 e−Nε.

Consequently, if N is odd, rather than distributing the charges uni-
formly on the ellipse, a “lower” energy symmetric state would correspond
to having (N − 1)/2 charges on one “branch” of the ellipse (say between
θ=0 and π on the unit circle, and having (N +1)/2 charges on the other
branch, with positions corresponding to uniform distribution of N−1 and
N +1 charges respectively. For large N , the energy of such a “symmetric”
state with charges at the sharp “ends” of the ellipse will be

En�− logN
2N

+D1N
−2 log(1− e−Nε/2)−D2N

−1 log(1− e−Nε),

where D1 and D2>0 are constants that depend on whether N is even or
odd. A similar argument for the hypotrochoid yields

En�− logN
2N

−CN−2e−Nε/3,

with a positive constant C that depends on whether or not N is divisible
by 3.

The above arguments show that, the “symmetry broken” states have

En�− logN
2N

−
{
AN−1 ellipse
BN−3/2 hypotrochoid

with A,B>0. Comparing the two expressions, we see that the crossover in
the energy scaling, as well as the symmetry breaking transition occur at

ε∼
{
N−1(1− e−A/D2) ellipse,
3N−1( 1

2 logN +F) hypotrochoid,

where F = logB− logC.
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Fig. 26. A comparison between the predicted and the numerically observed symmetry
breaking.

We compare the formula for the hypotrochoid with numerical obser-
vations. For the hypotrochoid, the above formula yields

c= 1
2

exp
[
−3

2
logN
N

+ 3F
N

]
.

Fig. 26 is a plot of the c–value for the symmetry breaking, as a function
of N , for the hypotrochoid. There is one fitting parameter, F , which can
depend on whether or not N is divisible by 3.We see that the theory agrees
very well with the numerics, both for N=0 mod 3 and N �=0 mod 3. When
N = 0mod 3 there are three “corners” which show a distortion from the
symmetry breaking while in the other cases there is but one. Hence the
former case has the most to gain from the symmetry breaking, and so we
expect the asymmetry to persist down to lower values of c for that case.
The data supports this expectation.

4.5. Universality in the Charge Locations for Singular Curves

We first consider the problem of the placement of N identical charges
of strength 1/N on the line segment �1 = [−1,1]. The Fekete polynomial
fN(x) for �1 is given by

fN(x)=
N∏
j

|x− ζj |
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where ζj are defined by

N∏
i=1

N∏
j �=i

|ζi − ζj |= max
x1,... ,xN∈[−1,1]

N∏
i=1

N∏
j �=i

|xi −xj |.

fN obeys the equation(33)

(1−x2)f ′′
N +N(N −1)fN =0.

The solution can be expressed as

fN(x)= cN(x2 −1)P ′
N−1(x)=2N

(
2N
N

)−1

{PN(x)−PN−2(x)},

where Pk denotes the Legendre polynomial of degree k(33,34,38). N identi-
cal charges therefore place themselves at the ends of the segment and at
the positions of the extrema of the Legendre polynomial of degree N −1,
or equivalently at the intersections of the Legendre polynomials of degrees
N and N − 2. Figure 27 represents the case N = 20. The charges accu-
mulate toward the ends. This is consistent with the solution of the con-
tinuum problem, i.e., the equilibrium charge density on the line segment
�1 = [−1,1], corresponding to the situation N→∞, and given by

ρ(x)= 1
π

1√
1−x2

.

One way to characterize the placement of N identical charges on a
line segment is to compute the ratio of two successive intervals between
the charges, �i+1/�i where �i = |xi+1 − xi |, i = 1 corresponding to the
charge placed at one extremity of the segment. The asymptotic dependence
of �i+1/�i on N is given by

�i+1/�i =Ri − Ai

N2
+O(N4),

where Ri and Ai are two constants depending on i.

Fig. 27. Placement of 20 charges on a line segment.
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Fig. 28. Dependence of �i+1/Deltai on i.

The star symbols in figure 28 show the dependence of �i+1/�i on i

for the line, obtained for N =200. As expected, �i+1/�i tends to 1 when
i increases, i.e., in the central part of the line segment.

The other singular curve we are interested in is the hypotrochoid with
c=0.5. In this singular limit, the charge symmetry is broken for any finite
number of charges N . Moreover, in the limit of large N , the placement
of the charges near the cusps is similar to the placement of charges on
the line segment. We have projected the charges positions near one cusp
on the symmetry axis of this cusp, and we have computed the quantities
�i+1/�i as defined for the line segment. The results are shown in Fig. 28
by circles, computed for N = 800. The correspondence with the results for
the line is excellent. This is a signature of universal behavior of the charge
locations close to the cusp even in the symmetry broken regime.

Let us remark that the situation is completely different in the case of
regular polygons, where we consider the placement of charges near a cor-
ner instead of a cusp. This is illustrated in Figs. 29 and 30, which show the

Fig. 29. Placement of 120 charges on a regular hexagon.
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Fig. 30. Projection on the horizontal axis of the charge positions on two opposite sides of
the regular hexagon of Fig. 29; the filled circle is the corner charge.

placement of 120 charges on a regular hexagon. The second figure shows
the projection of the charges on the horizontal axis. The shift between two
facing charges is very small, and their projections remain paired. This
behavior is completely different from the one observed for the line and the
hypotrochoid.

5. DISCUSSION

We have investigated some aspects of the electrostatics of discrete
charges in two dimensions. The problem is of significant interest because
of its connections to approximation theory,(23,9) constructing conformal
maps(30) and Integrable systems.(40,25)

A dynamical version of this problem is also closely related to various
Laplacian growth models because of the deep connections between confor-
mal maps and Laplacian growth.(18,12,2) The dynamics of discrete charges
in two dimensions, when they are confined by appropriate potentials,(19) is
therefore relevant to electronic droplets in Quantum-Hall systems,(2) and
to Laplacian growth problems including Hele-Shaw(12) and DLA.(18) The
rich structure of the static problem certainly leads one to expect a similar
richness in the associated dynamics, and we will investigate this question
further.

In addition, the static problem is also a prototype for the following
class of problems –

Find the “optimal” way to discretize a continuum quantity.
As stated, this discrete optimization formulation is much too general

for us to say anything useful about it. Given a specific problem however,
there is an appropriate continuum quantity, and an appropriate notion of
optimality. Such problems arise in many places including approximation
theory,(4,36) optimal transport,(15) in discretizing integrable systems,(3,26)

etc.
As in the case of 2-D electrostatics, these discrete problems can have

a much richer structure than the corresponding continuum problem. In
particular, discretizing the continuum solution in an obvious manner will
not, in general, be a good solution for the discrete problem. One explic-
itly needs to account for the discreteness in the formulation. As we show
in Sec. 1, the locations of the discrete charges correspond to discretiz-
ing a density ρ which is not the continuum solution that minimizes the
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electrostatic energy. Rather, the density ρ minimizes the modified energy,
Es +Ecorr , which are given in Eqs. (22) and (23).

We can increase the “discreteness” of the problem, by making the
curve more singular, or equivalently reducing the total number of charges
N , for a fixed curve. As we increase the “discreteness”, we get further away
from the continuum solution. In particular, we have interesting, qualita-
tively new phenomena including symmetry breaking, which implies, among
other things, the lack of a unique minimizing configuration. This is in
sharp contrast to the continuum problem, which is convex, and therefore
has a unique solution. Discreteness can thus introduce non-convexity into
a problem whose continuum version is convex, and thereby change the
problem qualitatively.(31,32)

One of the results from this paper is the universal behavior of the the
charge distribution, viz., the ψ function in the neighborhood of cusps in
the symmetric regime. This behavior comes out of minimizing the modified
energy Es +Ecorr . This is no longer valid in the symmetry broken regime,
as illustrated by Figs. 7, 8 and 9. Despite this, universal behavior persists
even in the symmetry broken regime, as we illustrate in Fig. 28. It is inter-
esting to understand the nature of this universality, and we will explore
this further in the future.

APPENDIX A. SADDLE POINT EVALUATION OF s
(i)
m

To evaluate the successive terms s(i)m in the series solution Eq. (32), we
need the following result –

Lemma 1. Let α be a positive real number. Then,

2m∑
n=
[
m+1

2

]
(

m

n+m
)(

m+n
2m−n

)
αn= 1

3
βm
(

1+O
(

1
m

))
,

where

β= (α+
√

4α+α2)3

8α

and (
m+n

2m−n
)

= (m+n)!
(2m−n)!(2n−m)!

denotes the binomial coefficient.
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Proof. Setting n=my, replacing the sum over n by an integral with
measure mdy, using Stirling’s formula

p!=
√

2πp
(p
e

)p [
1+O

(
1
p

)]
,

we see that the sum

2m∑
n=
[
m+1

2

]
(

m

n+m
)(

m+n
2m−n

)
αn

reduces to

m√
2πm

∫ 2

y=1/2

αmy

1+y

√
1+y

(2−y)(2y−1)

[
(1+y)(1+y)

(2−y)(2−y)(2y−1)(2y−1)

]m
dy

with an O
(

1
m

)
relative error.

We will evaluate this integral by the saddle point method. Let g(y) be
defined as

g(y)= log

[
αy(1+y)(1+y)

(2−y)(2−y)(2y−1)(2y−1)

]
,

so that the integral reduces to

I = m√
2πm

∫ 2

y=1/2

emg(y)√
(1+y)(2−y)(2y−1)

dy.

The maximum for g(y) is at y∗ given by

log(α)+ log(1+y∗)+ log(2−y∗)−2 log(2y∗ −1)=0.

This yields the equation

α(1+y∗)(2−y∗)
(2y∗ −1)2

=1.
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Solving this quadratic equation, the relevant solution is

y∗ = 1
2

+ 3
2

√
α

4+α ,

For 0<α<∞, we get y∗ ∈ (1/2,2), so that the extremum lies within the
range of integration.

exp(g(y∗)) = 1
α

(
2y∗ −1
2−y∗

)3

= 1
α

(
2
√
α√

4+α−√
α

)3

= (α+
√

4α+α2)3

8α
=β.

Expanding g(y) about y∗, we get

g(y)=g(y∗)− 9
2(1+y∗)(2−y∗)(1−2y∗)

(y−y∗)2 +O((y−y∗)3)

so that the point y∗ is a maximum for g. We are now in a position to
apply the saddle point method, and for large m we obtain

I ∼ 1
3
βm

asymptotically, with O(1/m) corrections.

APPENDIX B. THE ENERGY OF SYMMETRIC CONFIGURATIONS

FOR SINGULAR SHAPES

We estimate the energy of the symmetric configuration obtained by
distributing the N charges uniformly on the unit circle, i.e, the points on
the curve are zj =F(wj )=F [ei(θ0+2πj/N)]. We are especially interested in
situations close to the “singular” shape (c= 1 for the ellipse and c= 1/2
for the hypotrochoid). For this choice of wj , we have

sk =
N−1∑
j=0

wkj =
{

0 k �=0 mod N
Neikθ0 k=0 mod N
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As we show in Sec. 2, the deviation of the energy from that of a unit
circle can be written as

�EN =�
∫

dw

4πiw
wN

wN −1
lnwF ′(w).

Writing this expression in terms of sk and the matrices akl and ck, we get

�EN = 1
2

∑
k� 1

∑
l� 1

akN,lNe
−i(k+l)Nθ0 − 1

2N

∑
k� 1

ckNe
−ikNθ0 .

We will first evaluate this sum for the ellipse. Using the expressions
for akl and ck in Eqs. (27) and (28) respectively, we get

�EellN = 1
2

∑
q� 1

cq

q
δq,kNe

−2ikNθ0 − 1
2N

∑
q� 1

cq

q
δ2q,kNe

−ikNθ0 (39)

We need to do the cases N odd and N even separately.
If N is odd, 2q = kN implies that q is a multiple of N and k is

even. Therefore 2q=kN implies q=jN and k=2j . Consequently, Eq. (39)
yields

�EellN = 1
2N

∑
k� 1

[ce−2iθ0 ]Nk

k
− 1

2N2

∑
j � 1

[ce−2iθ0 ]Nj

j
.

If N is even, 2q=kN implies that q is a multiple of N/2 and there are no
restrictions on k. Therefore 2q= kN implies q= k(N/2), and k�1 is any
natural number. Eq (39) now yields

�EellN = 1
2N

∑
k� 1

[ce−2iθ0 ]Nk

k
− 1
N2

∑
k� 1

[ce−2iθ0 ]Nk/2

k
.

We can evaluate these sums using the identity

∞∑
k=1

e−λk

k
=− log(1− e−λ).
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This yields the following exact result for the ellipse

�EellN =
{[

1
2N2 − 1

2N

]
log(1− e−N(ε+2iθ0)) N odd

− 1
2N log(1− e−N(ε+2iθ0))+ 1

N2 log(1− e−N(ε+2iθ0)/2) N even ,

(40)

where, as defined earlier, ε= log(c)≈1− c

B.1. Hypotrochoid

We can do a similar calculation for the hypotrochoid. Using the
expressions in Eqs. (29) and (30), we obtain

�E
hypo
N = 1

2

∑
q� 1

cq

q


 q∑
p=0

δq+p,kNδ2q−p,lN
(
q

p

)
− 1
N

2qδ3q,jN


 e−3iqθ0

(41)

We will now look which values of q and p contribute in the above sum-
mation.

q+p=0,2q−p=0 mod N �⇒ 3q=0,3p=0 mod N.

We therefore need to do the cases N = 0 mod 3 and N �= 0 mod 3 sepa-
rately. If N �= 0 mod 3, 3q = 0 mod N and 3p= 0 mod N imply that that
q= jN , p=mN , where j,m are integers. In this case, Eq. (41) yields

�E
hypo
N = 1

2N

∑
j � 1

[ce−3iθ0 ]jN

j


 j∑
m=0

(
jN

mN

)
− 1
N

2jN




= I + II (42)

We can estimate part II of the sum as above. We have

− 1
2N2

∑
j � 1

[ce−3iθ0 ]jN

j
2jN = 1

2N2
log

[
1− [2ce−3iθ0 ]N

]

To estimate part I , we use the identity

N−1∑
β=0

(
1+ e2πiβ/N

)jN =N
j∑

m=0

(
jN

mN

)
.
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Using this, and the above considerations, we get

I = 1
2N2

∑
j � 1

[ce−3iθ0 ]jN

j

N−1∑
β=0

(
1+ e2πiβ/N

)jN

Interchanging the order of the summations, we get

I = 1
2N2

N−1∑
β=0

log
[

1−
[
ce−3iθ0

(
1+ e2πiβ/N

)]N]

Since

(
1+ e2πiβ/N

)N =2N cosN
(
πβ

N

)
eiπβ,

writing
∑N−1
β=0 =∑N/2−1

β=−N/2, and using 2c= e−ε we get

I = 1
4N2

N/2−1∑
β=N/2

log
[

1+ e−2Nε cos2N
(
πβ

N

)

−2(−1)βe−Nε cosN
(
πβ

N

)
cos(3Nθ0)

]

We will estimate this term for θ0 =0. We get,

I = 1
2N2

N/2−1∑
β=N/2

log
[

1− (−1)βe−Nε cosN
(
πβ

N

)]
.

We will estimate the sums over odd β and even β separately. We get

I = 1
2N2


 ∑
β odd

log
[

1+ e−Nε cosN
(
πβ

N

)]

+
∑

β even
log

[
1− e−Nε cosN

(
πβ

N

)]

Note that the terms with odd β are all positive, and the terms with even
β are all negative.
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It is easy to verify that, for an appropriate constant C, we have

e−θ
2/2(1−Cθ4)� cos(θ)� e−θ2/2, −π/2 � θ �π/2.

Using this, for −N/2 �β�N/2, we get

exp

(
−π

2β2

2N

)(
1− C′β4

N4

)N
� cosN

(
πβ

N

)
� exp

(
−π

2β2

2N

)
,

where C′ is an appropriate constant. It is clear from the above inequalities,
that cosN

(
πβ
N

)
is significantly different from zero only for |β|�√

N�N/2

as N→∞. Also, if β∼O(√N) we have

∣∣∣∣∣∣1−
(

1− C′β4

N4

)N ∣∣∣∣∣∣�O
(

1
N

)

in the region where the exponential e−π2β2/2N is not exponentially small.

Consequently, the relative error in the approximation

cosN
(
πβ

N

)
≈ exp

(
−π

2β2

2N

)
,

goes to zero as N→∞. We thus obtain

1
4N2

N/2−1∑
β=−N/2

log
[

1−α cosN
(
πβ

N

)]

≈ 1
4N2

∫ N/2

−N/2
log

[
1−α exp

(
−π2β2

2N

)]
dβ

≈ 1

4
√
πN3

∫ ∞

−∞
log

[
1−α exp(−x2/2)

]
dx,

where we set x=πβ/√N , and the relative error is O(N−1) as N→∞.
Note also, if the sum over β was restricted to either only odd or only

even β, we have to multiply the final integral by 1/2 to obtain the right
answer. This can be justified since the integrand only varies on a scale
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β∼√
N	1, so that the sum over the even β should very nearly equal the

sum over the odd β.
We will now evaluate the integral in the last line for |α|�1. Using

log(1−y)=−
[
y+ y2

2
+ y3

3
+· · ·

]
,

and integrating the resulting series termwise, we get

∫ ∞

−∞
log

[
1−α exp(−x2/2)

]
dx=−

√
2π

∞∑
k=1

αk

k3/2
.

We define

G(α)=
∞∑
k=1

αk

k3/2
, |α|<1.

It is easy to see that, at α = 1, the sum is the Riemann zeta function
G(1)= ζ(3/2). Also, the series for G′(α) diverges like C/

√
1−α as α→1.

Consequently, for α close to 1, we have

G(α)= ζ(3/2)−C√
1−α+O(|1−α|3/2).

Also, G(0)=0,G′(0)=1 and G′′(0)=1/
√

8.
Using the above considerations, we can estimate the term I as

I =− 1

4
√

2N3

[
G(e−Nε)+G(−e−Nε)

]
+O

(
e−Nε

N5/2

)
.

Therefore, we have,

I ≈
{− ζ(3/2)

8N3/2 Nε�1,

− e−2Nε

8N3/2 +O
(
e−Nε
N5/2

)
Nε	1.

We now consider the case N=0 mod 3. Te only terms in the summa-
tions in eq. (41) that contribute arise from

q+p=0,2q−p=0 mod N �⇒ 3q=0,3p=0 mod N.
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Since N = 0 mod 3, 3q = 0 mod N and 3p= 0 mod N imply that q = jL,
p = mL, where j,m are integers, and L = N/3. Also, q + p = 0 mod N
implies that j +m= 0 mod 3, and this also implies 2p − q = pN − (p +
q)M=0 mod N .

If j = 3k− r, where r ∈ {0,1,2}, it follows that m= 3t + r, where k, r
are integers. Also, q= jL=kN − rL and p=mL= tN + rL. Consequently,
eq. (41) yields

�E
hypo
N = 1

2

2∑
r=0

∑
k� 1

[ce−3iθ0 ]kN−rL

kN − rL


k−[r/2]∑

t=0

(
kN − rL
tN + rL

)
− 1

2NL

∑
j � 1

[2ce−3iθ0 ]jL

j

= I + II (43)

Part II gives

− 1
2NL

∑
j � 1

[2ce−3iθ0 ]jL

j
= 3

2N2
log

[
1− [2ce−3iθ0 ]N/3

]

To estimate part I , we use the identity

N−1∑
β=0

e−2πiβr/3
(

1+ e2πiβ/N
)kN−rL=N

k−[r/2]∑
t=0

(
kN − rL
tN + rL

)
.

Using this in eq. (43), we get

I = 1
2N

2∑
r=0

e−2πiβr/3
∑
k� 1

[ce−3iθ0 ]kN−rL

kN − rL
N−1∑
β=0

(
1+ e2πiβ/N

)kN−rL
(44)

For all complex number |z|<1 and r=0,1,2, we have

3
∑
k� 1

z3k−r

3k− r =




− log(1− z3), r=0,
− log(1− z)−ω2 log(1−ωz)−ω log(1−ω2z), r=1,
− log(1− z)−ω log(1−ωz)−ω2 log(1−ω2z), r=2,
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∑
k� 1

z3k−r

3k− r =−1
3

2∑
s=0

ω2rs log(1−ωsz)

where ω= e−2πi/3 is a cube root of unity.

Interchanging the order of the summations in (44), and using the
above identities, we get

I =− 1
2N2

N−1∑
β=0

2∑
s=0

2∑
r=0

ω(β+2s)r log
[

1−ωs
[
ce−3iθ0

(
1+ e2πiβ/N

)]N]

Note that

2∑
r=0

ω(β+2s)r =
{

0 β+2s �=0 mod 3
3 s=β mod 3.

Therefore,

I =− 3
2N2

N−1∑
β=0

log
[

1− e−2πiβ/3
[
ce−3iθ0

(
1+ e2πiβ/N

)]N]

Breaking this sum up into 6 parts using β mod 6, setting θ0 =0 and notic-
ing the similarity with the N �=0 mod 3 case, we get

I = 1

4
√

2N3

2∑
r=0

[
G(ωre−Nε/3)+G(−ωre−Nε/3)

]
+O

(
e−Nε/3

N5/2

)
.
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